Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(1): 73-76, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563372

RESUMEN

A novel, to the best of our knowledge, sensor architecture for palladium-coated fiber Bragg gratings is proposed and demonstrated that allows highly accurate multi-parameter sensing and decoupling of hydrogen concentration from temperature. By means of partly Pd-coated Pi-shifted FBGs (PSFBGs), the notch wavelength of the narrow transmission band and the flank wavelength of the broader reflection band experience different hydrogen and temperature sensitivities. PSFBGs were calibrated at hydrogen concentrations between 800 and 10,000 ppm and temperatures from 20 to 40°C, and a decreased hydrogen sensitivity at increased temperatures was found. Nonlinear temperature-dependent hydrogen calibration functions were therefore determined. An iterative matrix algorithm was used to decouple hydrogen concentration and temperature and to account for the nonlinear calibration functions. Achieved improvements and results have great importance for real field applications of FBG-based hydrogen sensing.

2.
Opt Express ; 30(25): 44769-44784, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522893

RESUMEN

A new calibration methodology for regenerated fiber Bragg grating (RFBG) temperature sensors up to 700 °C is proposed and demonstrated. A generalized, wavelength-dependent temperature calibration function is experimentally determined that describes the temperature-induced wavelength shifts for all RFBG sensor elements that are manufactured with the same fabrication parameters in the wavelength range from 1465 nm to 1605 nm. Using this generalized calibration function for absolute temperature measurements, each RFBG sensor element only needs to be calibrated at one reference temperature, representing a considerable simplification of the conventional calibration procedure. The new calibration methodology was validated with 7 RFBGs, and uncertainties were found to be compliant with those of Class 1 thermocouples (< ±1.5 K or < ±0.4% of the measured temperature). The proposed calibration technique overcomes difficulties with the calibration of spatially extended multipoint RFBG sensor arrays, where setting up an adequate calibration facility for large sensor fibers is challenging and costly. We assume that this calibration method can also be adapted to other types of FBG temperature sensors besides RFBGs. An accurate and practical calibration approach is essential for the acceptance and dissemination of the fiber-optic multipoint temperature sensing technology.

3.
Opt Express ; 30(19): 33449-33464, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242381

RESUMEN

An optical fiber with both temperature and strain fiber Bragg grating sensors were embedded into an aluminum cast structure during the casting process. Temperature and strain calibrations were carried out respectively for the metal-embedded sensors. Temperature and external strain decoupling was further demonstrated in a temperature range from 25 to 80 °C and an external strain range from 0 to ∼110 µÉ›. With the interpolated temperature measured by two temperature sensors at different positions, the external strain could be decoupled from temperature and thermal strain at the strain sensor. The temperature and external strain values obtained from our embedded optical fiber sensors agreed well with reference values, revealing the good performance of the metal-embedded optical fiber sensors. The difference between the measured values and the reference values are within ±5 µÉ› for external strain and ±1 °C for temperature. With only a single fiber, the in-situ temperature and external strain information in the aluminum structure can be monitored in real time, representing an important step towards fiber-optic smart casts. Our investigation demonstrates that embedded optical fiber sensors can be a promising method for structural health monitoring of metallic structures.


Asunto(s)
Aluminio , Fibras Ópticas , Tecnología de Fibra Óptica/métodos , Monitoreo Fisiológico , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...